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SUMMARY

In wireless sensor networks, most data aggregation scheduling methods let all nodes aggregate data in every
time instance. It is not energy efficient and practical because of link unreliability and data redundancy. This
paper proposes a lossy data aggregation (LDA) scheme to reduce traffic and save energy. LDA selects partial
child nodes to sample data at partial time slots and allows estimated aggregation at parent nodes or a root in
a network. We firstly consider that all nodes sample data synchronously and find that the error between the
real value of a physical parameter and that measured by LDA is bounded respectively with and without link
unreliability. Detailed analysis is given on error bound when a confidence level is previously assigned to the
root by a newly designed algorithm. Thus, each parent can determine the minimum number of child nodes
needed to achieve its assigned confidence level. We then analyze a probability to bound the error with a con-
fidence level previously assigned to the root when all nodes sample data asynchronously. An algorithm then
is designed to implement our data aggregation under asynchronization. Finally, we implement our experi-
ment on the basis of real test-beds to prove that the scheme can save more energy than an existing algorithm
for node selection, Distributive Online Greedy (DOG). Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In wireless sensor networks (WSNs), data processing in a sensor node usually consumes much less
power than data transmitting in each period [1]. Thus, it can save energy and reduce in-network
interference by applying data aggregation [2] or compression before transmitting data. A number of
novel data aggregation methods have been proposed recently with various optimization goals, such
as reducing the energy consumption [2–4] and the delay of data aggregation [5, 6]. Most of data
aggregation schemes argue that all sampled data can be successfully transmitted to a root, but it is
not always feasible to query all nodes in real applications [7] as this can result in a great deal of
resource consumption. Because links are not always reliable [8] and some nodes cannot work nor-
mally all through in some practical applications, some packets are inevitably and unpredictably lost
by some nodes at some sampling periods or time slots with probability Pl . The final data received
by parent nodes are fragmentary. In this paper, we do not analyze how to obtain these probability
Pl because there are some previous papers analyzing link reliability through estimating bit error
rate [9] or packet-receiving rate [10, 11]. Data aggregation methods typically let each node sample
data at all slots and collect the data from all of their child nodes. Meanwhile, the sample rate is
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always limited by the network capacity [12], so aggregated data are easy to be delayed before it is
transmitted to the root by multi-hop fashion.

Because WSNs have exiguous recourses, another unavoidable question is whether it is worthy col-
lecting high-precise information when relatively low-precise information is acceptable. Meanwhile,
any electric products, such as sensors and sensor nodes, have ‘observational error’ [13] when they
measure certain parameters, such as temperature and humidity. Observational error is an inherent
part of measurement. When its randomness or uncertainty is modeled by probability theory, one can
standardize statistical errors of some kinds of distribution, such as normal or Gaussian distribution.
In fact, sensor nodes are measurement tools because each node is equipped with several sensors,
which are used to measure physical parameters in its surroundings. Thus, we can use probability
distributions to estimate the measurement error among sensor nodes. In this sense, it is advisable to
collect data from a part of nodes or a part of data sampled in each time slot. This kind of scheme is
called lossy data aggregation (LDA), which can save much energy when a part of nodes consume
energy on sampling at part of time. We studied LDA under synchronization case in [14], which did
not consider LDA under asynchronization.

In this paper, we study LDA under asynchronization based on some previous results under syn-
chronization [14] and consider both cases of link reliability and unreliability. We firstly design LDA
under a case where there is only a part of nodes sampling data in part of time and all nodes transmit
data under synchronization. When each link is reliable, we positively select a part of nodes to sample
data in whole work time or in a part of time. Meanwhile, all nodes in a whole network still afford of
communication task. When each link is unreliable with a certain probability Pl , we analyze an error
under a given confidence level when we positively adopt retransmission scheme. In this paper, the
error is an estimated value to indicate the difference between the measured value of a parameter and
its real one. Notice that the reliability of each link can be estimated according to its packet-receiving
rate [15]. Thus,Pl can accordingly be obtained. Here, an interesting problem is how to determine the
probability Pr of the successful retransmission on each link according to the value of Pl , which can
be obtained previously. We establish the relation between Pl and Pr when the error under a certain
confidence level is previously required. Thereafter, we study the confidence level to bound the error
when all nodes sample data asynchronously. The main contributions of this paper are as follows:

1. When each node samples data and clocks of all nodes are synchronous, we analyze the error
bound } between the value D of a parameter measured by LDA and its real value D0 under
certain confidence level 1� � .

2. Under both of link reliability and unreliability, we give theoretical support for the confi-
dence level allocation among parent nodes when the errors admitted on these parent nodes are
given beforehand. An algorithm is designed to allocate the confidence level among different
parent nodes.

3. We analyze the confidence level under asynchronous data sampling when a certain error is
required. Furthermore, an algorithm is designed to find a uniform duration for all nodes, during
which the sampled data are aggregated.

4. We establish a real test-bed of TelosB nodes to evaluate our scheme on energy efficiency and
errors under different confidence level. Section 6 shows that different amount of energy can
be saved when different confidence levels are required.

The rest of this paper is organized as follows. The network model is defined in Section 3, which
also presents a data aggregation scheme. Our scheduling algorithms are presented and analyzed
under the cases of synchronous and asynchronous sampling respectively in Sections 4 and 5. In
Section 6, detailed experiments are designed to evaluate the performance of our algorithms.
Section 2 outlines some related works. Section 7 concludes this paper and discusses some
future works.

2. BACKGROUND

In WSNs, data aggregation has been well studied in recent years [3,5,16–19], which aims to reduce
energy consumption and latency. However, a few of works focused on LDA.
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The first main purpose of in-network aggregation is to decrease energy consumption on com-
munication [2]. Instead of transmitting raw data to a root, it can save much energy and decrease
in-network interference to compute and transmit partially aggregated data. Hu et al. proposed a
heuristic algorithm for constructing data aggregation trees that minimize total energy cost under a
latency bound and computed the worst case delay for a sensor node to aggregate data from all its
child nodes in the aggregation tree based on an analytic model for IEEE standard 802.15.4 [20]. The
second main purpose is to bound the latency of data aggregation. In order to decrease the latency,
Yu et al. developed a distributed collision-free schedule with the latency bound of 24DC 6�C 16,
where D is the network diameter and � is the maximum node degree [6]. The tradeoff between
energy consumption and time latency was also analyzed in [21]. In data aggregation, it is popular
to construct a tree on the basis of a network by finding a connected dominating set (CDS) [22].
Ma et al. constructed an energy-based CDS and resulted in better performance [23]. Because colli-
sion and interference are unavoidable in WSNs [24], Lee et al. designed a collision-free scheduling
when data collection was implemented [25].

Tang et al. differentiated the precision of data collected from different sensor nodes to balance
their energy consumption [26]. Apoorva et al. gave a brief idea to decrease energy by letting a node
transmit data in each size-optimized cluster structure [27]. But, it did not consider that the link is
unreliable, and nodes may sample data asynchronously. Asynchronous data aggregation results in
difficulty because the data sampled from the surrounding are spatio-temporal relation. By exploiting
the relation, Golovin et al. presented a distributed algorithm for repeatedly selecting sensors online,
only receiving feedback about the utility of the selected sensors [28]. In this way, the selected nodes
only needed to sample data whereas the utility of a whole network was guaranteed. Deshpande et al.
proposed a model-based querying approach and built a prototype BBQ to activate sensors in order
to minimize prediction error [29]. These works all exploited the spatio-temporal relation of sensed
data to approximate the information sensed by a part of nodes with that by all nodes [30] Shi et al
constructed effective sensor data scheduling schemes that minimized the estimation error and sat-
isfied the energy constraint [31]. They studied two scenarios: the sensor had sufficient computation
capability and the sensor had limited computation capability.

Although there were much work focusing on data aggregation, few of them simultaneously con-
sider the packet loss and sampling link unreliability, which are ineluctable in WSNs. Under LDA,
there is very few work researching aggregation with packet loss especially under asynchronization.
Meanwhile, the energy consumption on data sampling and transmitting can be reduced more when
proper strategies, such as loss data aggregation, are designed, which is not considered as far as
we know.

3. PRELIMINARY

3.1. Network model

A network consisting of n sensor nodes is modeled by a graph G.V ,E/. These nodes are randomly
and uniformly deployed in a C � C area and respectively denoted as Ni , i D 1, � � � ,n, composing a
node set V D fNi ji D 1, � � � ,ng. Every node Ni has a transmission range ri such that two nodes Ni
and Nj can communicate with each other directly if jjNi �Nj jj 6 r , where r D minfri , rj g, and
there is no other simultaneous transmission in both transmission area of Ni and Nj . The transmis-
sion range r of each node is properly set to guarantee the whole network connected [32]. We adopt
an existing algorithm to construct a CDS S , S � V . Wan et al. presented a distributed algorithm
that had an approximation factor of at most eight, O.n/ time complexity and O.n logn/ message
complexity [33]. Then, each node Ni (Ni 62 S) can find a node Nj (Nj 2 S) and connect with it.
All nodes in Nj 2 S can connect together and send their data to a root by multi-hop. We call those
nodes in S as parents nodes (or parents) and the nodes not in S as child nodes (children). All nodes
transmit their data to the root directly or through relay nodes.

3.2. Data aggregation scheme

In WSNs, one of the primary tasks is that each node collects and transmits data to its destinations.
Meanwhile, each node works under duty cycle mode in order to prolong the network lifetime as
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Figure 1. (a) Duty cycle. (b) A data aggregation treeDT r with a subtreeDT 3, in which white node has no
child whereas black does.

shown in Figure 1(a). A node keeps itself ‘active’ in work time tw and ‘sleep’ in sleep time ts . This
paper divides a period of work time tw into K equal time slots. All nodes run the same duty cycle.

We denote the life time of a network as F and assume that F D L�T , where L is a natural num-
ber. At pth .p D 1, � � � ,K/ slot Sp of qth .q D 1, � � � ,L/ period Tq , a node Ni samples a data from
environment. The data are denoted as D.p, q, i/ so we can denote a series of data by D.Sp , q, i/
.p D 1, � � � ,K/, which is sampled by a node Ni at qth period Tq . We suppose that the data series
D.p, q, i/ .p D 1, � � � ,K/ is relative to time t and denote the series by N .t/. For convenience, we
denote the sampled or received data asD.p, q, i/ and the aggregated data on nodeNi asDf .p, q, i/
according to some kind of aggregation function f , that is,Df .Sp ,Tq , i/D f .D.Sp ,Tq , S //, where
S � V is a subset containing nodes in the aggregation tree rooted at Ni . f can mean the calculation
max, min, average, and so on. In brief, we use Df instead of Df .Sp ,Tq , k/.

This paper adopts the following aggregation function: f . Each node Ni obtains ki (ki 6 K) data
after sampling data in each period T and aggregates these ki data into one. If Ni 62 S , Ni sends its
aggregated data to its parent. If Ni 2 S , Ni waits till it receives all data of its child nodes. Then, Ni
aggregates its data and that of its child nodes into one, which is transmitted to the root by multi-hop
fashion. When a child Ni transmits its own aggregated data to the root through other intermediate
nodes, other nodes aggregate their data with Ni ’s.

Suppose that there exists a routing protocol, which constructs a fixed routing to the root for each
node in a network. We can use the aggregation tree DT r to describe the process of data aggrega-
tion and transmission as shown in Figure 1(b). The aggregation tree DT r denotes a tree rooted at
a node Nr , and the size of DT r is denoted as jDT r j, which can be worked out by the root Nr in
our function f . In a period Tq , Nr can know the number of child nodes, which gather data from the
physical world.

4. SYNCHRONOUS SAMPLING

In this section, all nodes sample data synchronously. We adopt two ways to reduce the number of
time slots, in which nodes sample data, and the number of nodes to transmit data. One way is called
controllable data aggregation whereas the other is uncontrollable data aggregation.

In the following context, we suppose that the data D.p, q, i/, directly gathered from the physical
world, obeys the normal distribution N.�, �2/, where u is the expectation and � is the variance.
D.p, q, i/ and D.p, q, j / are independent from each other when i ¤ j .

4.1. Controllable data aggregation

When links and nodes are reliable and the interference within a network can be avoided by a
precisely designed schedule, we can assume that there is no link unreliability. Under this case, a
root can receive the aggregated data D.p, q, i/ (p D 1, � � � ,K and i D 1, � � � ,n) from all nodes
at each period Tq without losing any sampled data. Thus, we can theoretically analyze the least
number m of nodes needing to sample data and transmit their data to the root when we guarantee
P.jDf �D

0
f
j < }/D 1� � , where } is a small positive value. So, we can design an algorithm to

select only m nodes to sample data.
This paper proposes two ways to implement LDA under controllable data aggregation. The first

is that a root only collects the data of m nodes .m < n/, and these m nodes sample data in all time
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slots. The second is that the root also collects the data ofm out of n nodes, but each ofm nodes only
samples data in part of time slots.

The first way is described as follows. When all nodes sample and aggregate data at all time slots,
the root can finally obtain an aggregated data Dn

f
. WSNs are large-scale networks, so we consider

that n is big enough to ensure V a big sample space. Therefore, we consider Dn
f

very close to the
real value such that it can represent the real value. When the root randomly and uniformly selectsm
out of n nodes, we denote the value of the aggregated data at the root as Dm

f
. Thus, we can easily

obtain the following theorem according to the interval estimation [34].

Theorem 1
When there are m .m < n/ nodes, randomly chosen, sampling and aggregating data and each of m

nodes gathers data at all time slots, we have P fjDm
f
�Dn

f
j < }g D 1� � , where } D

S �t �
2
.m�1/
p
m

§,
S is a standard deviation, 06 } and 06 � 6 1.

Proof
Because there are totally n nodes in a network, the average value Dn

f
of their sampled

data D.p, q, i/ is Dn
f
D 1

n

Pn
iD1D.Sp ,Tq , i/ at the period Tq , where D.Sp ,Tq , i/ D

1
K

PK
pD1D.p,Tq , i/. According to the law of large numbers [35], there is a following equation:

P.jDn
f ��j< �/> 1�

�2

n � �2

where � > 0 is a small positive number. WSN is a kind of large-scale network so we can ensure that
n is large enough to guarantee Dn

f
D � with high probability.

When there are only m nodes sampling, aggregating, and sending data to the root, the average
valueDm

f
of their sampled dataD.p, q, i/ isDm

f
D 1

m

Pm
iD1D.Sp ,Tq , i/ in each period Tq . Notice

that these m nodes are randomly chosen. The error between Dm
f

and the expectation � of the data
in the real world then can be obtained by the following equation:

P fj
Dm
f
��

�

p
mj< cg D 1� � (1)

where c > 0 and 1� � is a confidence level. The variance � in physical world is usually unknown.
Furthermore, the root can estimate the variance on the basis of the current data according to a
following equation.

S D

vuut 1

m� 1

mX
iD1

.D.Sp ,Tq , i/�Dm
f
/2 (2)

On the basis of Equation (2), we can obtain a following equation according to Equation (1).

P fj
Dm
f
��

S

p
mj< cg D 1� �

As
Dm
f
��

S

p
m obeys t .m � 1/ distribution, we have P fjt j < cg D 1 � � , that is, P fjt j > cg D

1�P fjt j< cg D � . Therefore, we have the following equation:

P fjDm
f ��j< }g D 1� � (3)

where } D S �cp
m

and c D t �
2
.m� 1/. This finishes the proof. �

§t-distribution has the probability density function: f�.t/ D
�.

�C1
2 /

p
���.

�
2 /
.1 C t2

�
/�.�C1/=2, where � is the number of

degrees of freedom and � is the Gamma function.
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The above theorem means that the root need receive data only from m nodes if the difference }
with confidence level 1 � � is acceptable. The parameters } and � are previously set at the root.
Thus, n�m nodes can stop gathering data and save energy. Notice that these n�m nodes still afford
of communication task. We denote the parameters }k and �k for an arbitrary parent nodeNk . When
Nk selects itsmk (mk 6m) child nodes to sample and transmit data,mk D

mjDTk j
n

with probability,
where jDTkj denotes the cardinality of the set DTk . We can generalize the result in Theorem 1 to
the following equation.

P fjD
mk
f
��j< }kg D 1� �k (4)

where }k D
Smk �cp
mk

, c D t �k
2
.mk � 1/ and Smk D

q
1

mk�1

Pmk
iD1.D.Sp ,Tq , i/�Dmk

f
/2.

On the basis of the first way, the second way to save energy and sampling time is that each node
samples data in � out of K time slots whereas the root still randomly and uniformly chooses m
nodes to sample data. Here, we use Dk�

f
to denote the value of the aggregated data at the node Nk

when a node samples only at � time slots and there are totally m nodes to sample data. Dk
f

denotes
the value of aggregation data at a node Nk when Nk samples at all time slots, the error between
D
k�

f
and Dk

f
could be bounded to be at most e}k rooted at a node Nk with a given confidence level

level 1� �k , where e}k > 0 and 06 �k 6 1.

Lemma 1
When a node Nk randomly chooses mk (mk 6 m) nodes in its DTk , to sample and aggregate data
and each ofmk nodes samples data at � (�6K) time slots, we have P fjDk�

f
�Dk

f
j< Q}kg D 1��k ,

where Q}k D
Sk �t �k

2
.mk�1/p
mk

, Sk is a standard deviation.

Proof
When each nodeNi gathers data at � out ofK time slots at period Tq , we can obtain that the average
of these � sampled data is Di�

f
D 1

�

P�
pD1D.p,Tq , i/ at period Tq . The following equation can be

obtained according to Theorem 1:

PifjD
i�

f
�Df j< }ig D 1� �i

where Df D
1
K

PK
pD1D.p,Tq , i/, }i D

Si �cip
�

and ci D t �i
2
.�� 1/ (0 6 }i and 0 6 �i 6 1). Here,

Si is described in Equation (5).

Si D

vuut 1

�� 1

�X
pD1

.D.p,Tq , i/�Di�

f
/2 (5)

When there are totally m nodes to sample data in the whole network, the expected number mk
of nodes contained in an aggregation tree DTk is mjDTk j

n
. The average value Dmk

f
of their sampled

data D.p, q, i/ is eDmk
f
D 1

mk

Pmk
iD1 �D

i�

f
at Tq . Thus, the standard deviation is

Sk D

vuut 1

mk � 1

mkX
iD1

.D
i�

f
� eDmk

f
/2 (6)

The error between eDmk
f

and � is:

P fjeDmk
f
��j< }kg D 1� �k (7)

where }k D
Sk �ckp
mk

and ck D t �k
2
.mk � 1/. �
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Notice that the number p of time slots in each period Tq is usually small, so the confidence level
1� �k cannot be very high at certain error }k . When we consider the value Dn�

f
of the aggregated

data at the root and m nodes sample only at � time slots, the error between Dn�

f
and Dn

f
could be

bounded to be at most }n under the confidence level 1� �n, where }n > 0 and 06 1� �n 6 1.

Lemma 2
In Lemma 1, if the data are aggregated to the root, then P fjDn�

f
�Dn

f
j< }ng D 1� �n.

In Lemma 1, the aggregation tree DTk extends to be a tree rooted at the root DTs when
the aggregated data are transmitted to the root finally. The average value Dm

f
of their sam-

pled data D.p, q, i/ is eDm
f
D 1

m

Pm
iD1 �D

i�

f
at Tq , so the standard deviation of these data is

QSn D
q

1
m�1

Pm
iD1.D

n�

f
� eDm

f
/2. According to Equation (5), the error between eDm

f
and � is

P fjeDm
f
��j<e}ng D 1� � , where e}n D eSn�cnp

m
and cn D t �n

2
.m� 1/. At the moment, eDn

f
D eDm

f
.

Lemma 2 means that the error between the aggregation data obtained from all time slots and that
obtained from � time slots is also bounded by the error }n under certain confidence level 1 � �n
when m nodes sample.

4.2. Noncontrollable data aggregation

In practical environments, nodes and links are unreliable and interference is unavoidable. There-
fore, some packets are unavoidably lost during transmission because of the unreliability of nodes
and links or some fault occurring.

Unlike the case in the Section 4.1, it is controllable that some nodes need sample data without
considering the link or node reliability. When the data lost does exist and all nodes sample data at
all time slots, we denote the aggregated data at the root as Dx

f
. Surely Dx

f
6Dn

f
.

Theorem 2
Suppose the link unreliability probability Pl happens randomly and uniformly in any time slots on
each link. If each node samples data at all time slots, then a parent can receive data with packet-loss
rate no bigger than }k under a confidence level 1��k when Pl is not bigger than jDTk j�mk

uk�vkC
Pvk
jD1
jNj j

.

Proof
Without loss of generality, suppose that a parentNk of a treeDTk has uk child nodes, among which
vk child nodes have their own child nodes and others have no child nodes of their own. Thus, these
child nodes may lose .uk � vk/Pl data. If we denote the vk child nodes as Nj , j D 1, � � � , vk , then
those nodes, which have their own child nodes, may lose Pl

Pvk
jD1 jNj j data. Thus, there are only

jDTkj � .uk � vk/Pl � Pl
Pvk
jD1 jNj j nodes, which can still send their data to Nk . According to

Equation (4), jDTkj�.uk�vk/Pl�Pl
Pvk
jD1 jNj j should not be less thanmk under the same error

}k and confidence level 1��k , wheremk , }k , and 1��k are determined according to Equation (4).
So, jDTkj � .uk � vk/Pl �Pl

Pvk
jD1 jNj j>mk , that is,

Pl 6
jDTkj �mk

uk � vk C
Pvk
jD1 jNj j

(8)

�

According to Theorem 2, a parent can make decision whether it need require its child nodes to
retransmit their data.

When the probability of link unreliability between any pair of nodes is Pl and we denote the
aggregated data at the root as eDn

f
, the following lemma can be obtained under certain error }l and

confidence level 1� �l .
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Lemma 3
Suppose that the packet-loss probability Pl happens randomly and uniformly in any time slots on
each link. We have P fj QDn

f
�Dn

f
j< }g D 1� � when Pl 6 1� m

n
and all nodes transmit their data

to the root.

Proof
When the aggregated data are sent to the root, jDTsj D n and mk D m, the root has no child node
so us D vs . According to Theorem 2, Pl 6 n�mPvs

jD1
jNj j
D n�m

n
D 1� m

n
, where vs is the child nodes

of the root. Therefore, Theorem 1 can still be satisfied when Pl 6 1� m
n

. �

When permanent fault occurs on links or nodes, the topology structure should be reconstructed.
The issue has been researched by many previous work. When temporary nodes or link fault occur,
on the basis of the received data, a parent can make a decision whether the fault branch or child need
retransmit their data.

When the link unreliability probability of a child node is Pl > 0, the child will be required to
retransmit its data. We suppose that data retransmission can be successful with probability Pr and

define the aggregated data at the node Nk as D
k

f after retransmission.

Lemma 4
Suppose that the link unreliability probability of a child node is Pl > 0 and the successful retrans-

mission probability is Pr . When Pl 6 jDTk j�mk

Œuk�vkC
Pvk
jD1
jNj j�Pr

, we have P fjD
k

f �D
n
f
j< }rg D 1�� ,

where }r is a given error bound.

Proof
If a parent Nk finds that the received aggregated data cannot satisfy Equation (8) when the data
loss probability is Pl , Nk lets the nodes fall to transmit and retransmit their data. Œ.uk � vk/Pl �
Pl
Pvk
jD1 jNj j� � Pr nodes may retransmit their data successfully. Thus, there are jDTkj � Œ.uk �

vk/Pl � Pl
Pvk
jD1 jNj j� � Pr nodes, which finally can transmit their data successfully. Accord-

ing to Equation (4), jDTkj � .uk � vk/Pl � Pl
Pvk
jD1 jNj j should not be less than mk under the

same }k and 1 � �k , where mk , }k , and 1 � �k are determined according to Equation (4). So,
jDTkj � Œ.uk � vk/Pl �Pl

Pvk
jD1 jNj j�Pr >mk , that is,

Pl 6
jDTkj �mk

Œuk � vk C
Pvk
jD1 jNj j�Pr

(9)

�
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4.3. Error and confidence level allocation

One interesting task is to allocate error and confidence level within a whole network. When an error
} is acceptable under a confidence level 1 � � at the root, it is necessary to allocate the error and
confidence level at some parents of different subtree. For example, if an error }b and a confidence
level 1�	b at a parentNb are known in Figure 1(b), how doesNb set the error }i and the confidence
level 1 � 	i for Ni (Ni 2 DTb) among DTb? Here, we discuss the question under two cases: link
reliability and link unreliability.

4.3.1. Allocation model. Before allocating the error under a certain confidence level within a
network, we firstly introduce an allocation model.

In Figure 1(b), an aggregation tree rooted at node Nr contains three levels. Each level contains
several child nodes. For convenience, an arbitrary sublayer of a tree DTr is constructed for illustra-
tion as shown in Figure 1(b). A subtree DT3 rooted at node Nb has l child nodes: N1, N2, � � � , Nl ,
where these nodes except N2 are also the parents of their sub-subtree. Because N1, � � � , Nl directly
transmit their data to Nb , they would not prevent other nodes from their successful transmission to
their parent. Notice that we are considering a case that there is no link unreliability. Therefore, we
can consider the subtreeDTb as a parallel system [36]. When we define the confidence level of each
node Ni as 1� �i and the error }b under the confidence level 1� �b of the parent Nb is given, the
probability Pb that jDNb

f
�Df j < }b is 1 � �b . Therefore, the probability for the parent can be

described by the probability of its child nodes.

Pb D 1�

kY
iD1

.1�Pi /D 1�

kY
iD1

�i (10)

where Pi is the probability about Ni that Pi .jD
Ni
f
�Df j < }i / is 1� �i . Notice that some nodes,

such as Nl , may not be selected to sample data and Nr only selects k (k 6 l) data to sample data in
Figure 1(b).

4.3.2. Under link reliability. When no link unreliability happens, at least m nodes should be
selected to sample and transmit data in the whole network according to Theorem 1. However, how
to select the m nodes depends on the error bound and confidence level given for the root.

It is easy to assign the root with an error bound and a confidence level but uneasy that the root
allocates its error bound and confidence level to its child nodes and its child nodes allocate their
error bound and confidence level to their child nodes till all parents are allocated their error bound
and confidence level. In the following context of this paper, Algorithm 2 gives a method to allocate
the confidence level between the parents and their child nodes.

We design a distributed algorithm (Algorithm 2) to allocate the confidence level 1� � pro rata to
different nodes when the error } is given. In Algorithm 2, the given graph G.V ,
/ is composed of
the vertex set V and no edge set. jV j D n and the node in V are randomly and uniformly deployed
to satisfy the connection condition as described in [32].
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Theorem 3
When each link is reliable and the error bound }r and confidence level 1� �r are previously given
to the root, the child nodes of the root can be allocated the confidence level �i , where �i D k

p
�r

and k D jDTsj.

Proof
We begin our proof on the basis of the model described in Equation (10). When k D 1, Pb D
1� �i D Pi .

When k > 2, k, �i and }i are determined in the following text.
There are many important and practical methods to distribute the probability indexes. Here, we

try to find the minimal error of
kP
iD1

}i under certain confidence level Pb whereas we find a k as

small as possible. A smaller k means to save more energy whereas a bigger k is needed to achieve a
lower error }i . Here, we use Lagrange undetermined coefficients method to find k as small as pos-
sible while guaranteeing that the error is kept at a proper value. Thus, we can construct a Lagrange
function H:

H D

kX
iD1

}i C 	.Pb C

kY
iD1

�i � 1/ (11)

In order to find the minimal value of }i , we can calculate the derivative of the Lagrange function
H and let it be zero, that is, @H

@}i
D 0. Because }i D

Si �cip
k

and ci D t �i
2
.k � 1/, we can obtain the

following equation:

}i D
Si � t �i

2
.k � 1/
p
k

(12)

The probability density function of the random variable t is as follows:

f .t , �/D
�..�C 1/=2/
p
��.�=2/

.1C t2=�/.�C1/=2

where � D k � 1, t D �i=2 and �.´/D
1R
0

e�t t´�1dt .

On the basis of Equation (11), the partial derivative of H with respect to the variable }i is given
as follows:

@H

@}i
D 1C 	

kY
jD1,j¤i

�j
@�i

@}i
(13)

According to Equation (12), we can obtain the partial derivative of �i with respect to the variable
}i .

@}i

@}i
D

Si
p
k

@t �i
2
.k � 1/

@}i

) 1D
Si
p
k

@f .�i=2, k � 1/

@}i

)
C

Si
D .1C

�2i
4.k � 1/

/k=2�1
�i

2.k � 1/

@�i

@}i

(14)
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where C D 2
p
.k�1/��..k�1/=2/
p
k�..k/=2/

. Let @H
@}i
D 0 in Equation (13) and on the basis of Equation (14), we

can obtain that

0D 1C 	
1�Pb

�i

@�i

@}i

) 	D�
�i

.1�Pb/
@�i
@}i

D�.1C
�2i

4.k � 1/
/k=2�1

�2i Si

2C.k � 1/.1�Pb/

Notice that the above equation is tenable for each �i (i D 1, � � � , k), so we can obtain the following
equation when i ¤ j .

.4.k � 1/C �2i /
k=2�1�2i Si D .4.k � 1/C �

2
j /
k=2�1�2j Sj (15)

According to Equations (10) and (15), �i (i D 1, � � � , k) can be solved. From Equation (15), we can
obtain that

.k=2� 1/ ln.4.k � 1/C �2i /C 2 ln �i C lnSi

D .k=2� 1/ ln.4.k � 1/C �2j /C 2 ln �j C lnSj i ¤ j

Because the value of k is the same for all nodes in the same aggregation treeDTr , the �i D �j when
i ¤ j . According to Equation (10), �i can be obtained in the following equation.

�i D
k
p
1�Pb D k

p
�r (16)

�

Now, we can design an algorithm to positively control whether a node samples data or not as
shown in Algorithm 3. On the basis of the error bound }r at the root and the confidence level allo-
cation obtained on Algorithm 2, Algorithm 3 makes each parent know the number of its child nodes
to sample.

4.3.3. Under link unreliability. When the link is unreliable, we suppose a data would be lost with
the probability Pl .

Theorem 4
When the link is unreliable with the probability Pl , and the error bound }r and confidence level
1��r are previously given to the root, the child nodes of the root can be allocated a confidence level

� 0i , where � 0i D 1�
1� k
p
�r

Pl
and k D jDTsj.
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Proof
When the data loss probability is Pl , according to Equation (10), we have the following equation.

Pb D 1�

kY
iD1

.1�PlPi / (17)

If we define P 0i D PlPi and � 0i D 1 � P 0i , then we can obtain the following equation from
Equation (17).

Pb D 1�

kY
iD1

� 0i (18)

We also use the Lagrange undetermined coefficient method to allocate the confidence level for
each parent as Equation (11) and can obtain the results similar to that in Equation (16). The relation
between �i and � 0i is

� 0i D 1�P
0
i D 1�PlPi D 1�Pl.1� �i / (19)

Therefore, the confidence level allocation function is

� 0i D 1�
1� �i

Pl
D 1�

1� k
p
�r

Pl

�

4.4. Energy saving

Here, we consider the energy saving under both cases of controllable and uncontrollable data
aggregation besides the inherent energy saving of data aggregation.

When we consider that there is no link unreliability as Section 4.1, the energy saving is mainly
due to the data transmission reduction, that is, some nodes need not sample and transmit the data
under some time slots. Although some packets are inevitably retransmitted because of collision
in wireless channel, it has less retransmission to adopt LDA schedule as there are less data to
transmit.

We define the energy cost to sample data in a slot as Es and the energy cost to transmit a packet
in one hop as Ep .

Lemma 5
When each link is reliable and only m nodes gather data at � time slots out of K, the saved energy
Ea is .n�m/..1� �/Es CEp/.

Proof
There are n � m nodes, which can save energy as they need not sample and transmit data. The
total saved energy Et mainly contains two parts: sampling energy and transmitting energy. Notice
that each node Ni samples data and transmits its data to its parent Nj . Nj aggregates the Ni ’s
data and that of itself into one packet. The energy to transmit a packet in one hop is saved.
Ea D .n�m/� .1� �/�Es C .n�m/�Ep D .n�m/..1� �/Es CEp/. �

Because some data are unavoidably lost, the error under the same confidence level is increased.
When we positively argue to retransmit the lost data, suppose that each transmission is unre-
liable with probability Pl and only m nodes gather data. The consumed energy to retransmit
is m � Pl � Ep because the number of lost packets is expectably m � Pl . Under the case,
the saved energy is maxf0, .n � m/..1 � �/Es C Ep/ � m � Pl � Epg. If the retransmission
scheme is given, the energy cost increases as Pr � m � Ep . At this moment, the saved energy is
maxf0, .n�m/..1� �/Es CEp/�m�Ep � .Pl �Pr/g.
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Period (T)

Work
time (tw)

Sleep
time (ts)

Slot 1 Slot m

(a)

N1 N2 Nk Nl

Nr

Na Nb Nc

(b)

Figure 2. (a) The beginning time is different when all nodes sample asynchronously. (b) Some node pairs
have similar sampling data piece in two ‘asynchronous’ duration.

5. ASYNCHRONOUS SAMPLING

Because the clock in a sensor node is easy to skew in WSNs or other reasons, each node samples
data asynchronously. Suppose that the beginning of all nodes’ sampling time is a Poisson process
Pk.t/, as shown in Figure 2(a). For example, the sample time t10, t23, t35, and tn8 at the nodes N1,
N2,N3, andNn correspond to the same time, but the nodes detect the sample times as different time.

If the data sampled by each node is relative on the geometric position and suppose that these data
obey a certain kind of probabilistic distribution, the distribution can be estimated and the homo-
geneous region (HR) in which a group of sensors have similar underlying distribution also can be
detected [37]. The data sampled by any two different nodes, such as Ni and Nj in Figure 2(b), con-
tain time offset, so they cannot be aggregated directly. When the two data obey the same distribution,
a part of both of data can be aggregated if the data are properly intercepted.

In this paper, we focus on the time-relative data distribution and find the beginning time, at which
two different nodes at the same HR have the same sampled data function. In Figure 2(b), the dis-
tribution function of the sampled data is defined as Fi .ti / for node Ni . We use two methods to
calculate the time ti (i D 1, � � � ,n), which correspond to the same time.

The first method is that each node estimates the distribution function of the sampled data.
The second method is that each node calculates the slope of the sampled data in each sample slot.

5.1. Without link unreliability

In this case, we do not consider the link unreliability. When a node aggregates the data from other
nodes, the data should be sampled at the same time slots in a period. Otherwise, the aggregated data
are invaluable.

Lemma 6
When the beginning time of each node is a Poisson process, the case in Theorem 1 cannot be
guaranteed.

We set a period as �t . In the period, the probability that there are more than one node beginning
to sample is zero as �t goes to zero, that is, �t ! 0. Therefore, there is no probability that there
are sufficient number of nodes, which can sample data simultaneously in the same work time tw .
Therefore, the case in Theorem 1 cannot be guaranteed. But, the case that m nodes synchronously
sample data at � common time slots does exist.

Theorem 5
When the sampling begin time of each node is a Poisson process with a rate parameter 	, the
confidence level is at most .1��/m

m

mŠ
e�m in order to guarantee the error e}.

Proof
During a period �t , the probability that there are m nodes beginning to sample is that

Pm.�t/D
.	�t/m

mŠ
e�	
t (20)
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The expectation is E.�t/D 	�t and the variance is Dm.�t/D 	�t , because there are K time
slots in a work time tw and a slot lasts tw

K
. When each of m node should have � common slots

to sample data, the period �t in which m nodes begin to sample is at most 2tw �
�tw
K

, that is,
�t 6 2tw � �tw

K
, which insures that two nodes must have � common time slots.

By @Pm.
t/
@
t

D 0, it is easy to find that �t D m
	

. When 0 6 �t 6 m
	

, Pm.�t/ is an increasing
function about �t . Otherwise, it is a decreasing one. Thus, Pm.�t/6 Pm.m	 /.

Define event1 in that there are m nodes that are beginning to sample in period �t , where
�t 6 2tw � �tw

K
.

Define event2 in that the error is less than }i .
Define event3 in that the error is less than }i when event1 happens.
Then, we have

P fevent3g D P fevent1 � event2g D P fevent1g �P fevent2g (21)

According to Theorem 1,

P fevent3g D .1� �/Pm.�t/

6 .1� �/Pm.
m

	
/D

.1� �/mm

mŠ
e�m

(22)

�

5.2. With link unreliability

It is a challenge problem to consider the link unreliability whereas all nodes sample data asyn-
chronously. We also suppose that each link has unreliable probability Pl . Under this case, there are
less number of nodes able to transmit data successfully.

Lemma 7
When the link unreliability probability of each node is Pl , there are still jDTkj � .uk � vk/Pl �
Pl
Pvk
jD1 jNj j nodes, which can still sample and transmit data normally.

Proof
According to Equation (20), the probability that m out of n nodes begins to sample in a period �t
is Pm.�t/. For a root node Ni , it has jDTi j neighbors. In the period �t , there are mjDTi j

n
nodes

beginning to work with probability Pm.�t/. Thus, there are expectably mjDTi j
n

Pm.�t/ nodes in the
period �t .

According to Theorem 2, there are only jDTkj � .uk � vk/Pl �Pl
Pvk
jD1 jNj j nodes, which can

still send their data to Nk . �

Because all nodes sample data asynchronously, their beginning times are different as shown in
Figure 2(a). But the data sampled by a pair of nodes are the same or similar in the same duration,
as shown in Figure 2(b),in spite that the two durations seem to be ‘asynchronous’. Suppose that two
nodes Ni and Nj sample data in each time slot, and they respectively obtain a series of sampled
data in a certain period of their own. If the data sampled by the two nodes are spatial correlation and
a part of one’s sampling time overlaps that of others, for example, the data sampled by Ni during
Œt1, t3� overlap that by Nj during Œt1, t3�. Notice that Œt1, t3� and Œt2, t4� can be considered to be the
same time duration. Then, the time t1 and t2 point to the same moment. On the basis of the idea
above and the KMP algorithm [38], we design Algorithm 4 to find the same moments of different
nodes’ clocks, which point to the same true time moment. In this way, we can know the relative time
difference among nodes, so we can aggregate the data sampled asynchronously. In Algorithm 4, we
set a time threshold tt in order to make the algorithm feasible.

After Algorithm 4 is implemented, a node can know the clock difference between its own and
others before it aggregates its data with other node. Hence, the node can aggregate data with others
in an exact time, and the data aggregation schemes adopted in the afterward periods could be same
with the case in Section 4.
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Figure 3. The deployment scenario.

6. EXPERIMENT ANALYSIS

In this section, we designed a real test-bed and detailed experiment to evaluate our LDA schemes.
We design three groups of experiments. The first group is that the nodes sample data in synchronous
way. The second one is that the nodes sample data in a asynchronous way. The third one is that there
exists link unreliability. In each group, there contains two cases. Under one, all nodes sample data
whereas only a part of nodes sample data under the other.

6.1. Test-bed setting

The test-bed is composed of 20 TelosB sensor nodes whereas an additional sensor node acts as the
root. The test-bed is deployed in an indoor scenario as shown in Figure 3. All nodes are deployed
into four rows and five columns. In the same rows and columns, each pair of neighboring nodes
are 60 cm away from each other. Each TelosB node runs in a TinyOS 1.1 [39]. In the experiment
of this paper, we let each sensor node sample the light intensity and pack the sampled data into
data packets. At first, we run the breadth-first search algorithm to construct a rooted spanning tree.
Then, we use the algorithm of Wan et al. [33] to construct a dominating tree. In the experiments,
the sample period of all nodes is set as 5 s, and each light sensor periodically samples the lumi-
nous intensity. In order to obtain synchronous time, we use a flooding method to synchronize the
network time [40]. Then, we can controllably set the clocks of all nodes to be asynchronous time by
allocating each node with beginning time obeying the Gaussian random distribution.
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Figure 4. Synchronous sample with different period intervals.

0 1 2 3 4 5 6

x 104

50

80

120

160

200

240

Sample series

L
um

in
ou

s 
de

ns
ity

15%
10%
5%
0

0 1 2 3 4 5 6

x 104

50

80

120

160

200

240

Sample series

L
um

in
ou

s 
de

ns
ity

15%
10%
5%
0

(a) 50period intervals (b)100 period intervals

Figure 5. Asynchronous sample with different period intervals.

Table I. Average error.

Confidence level 15% 10% 5% 0%
Synchronous sample 0.25961 �0.2268 �1.11392 �1

Asynchronous sample 0.05 �0.20909 �0.15 �4.074

6.2. Result analysis

We give the first group of experiments in which all nodes sample data synchronously. The group of
experiment is implemented from 13:30:39 to 22:04:04 on 29 July. The results are shown in Figure 4.
Each subfigure presents four experiment, in which there are respectively 15%, 10%, 5%, and 0%
nodes not to sample data. The sample time cannot be set arbitrarily on a real sensor node, such as
TelosB. So, we let sensor nodes sample data with high rate to make up the too short work time tw .
Figure 4 presents two kinds of sample rate although the periods are same. In (a), the interval is 50
periods between each two adjacent samples whereas the interval is 100 in (b).

Under the asynchronous sampling, the beginning time of all nodes are random. We suppose that
their beginning time obeys the Gaussian random distribution and set the average of the Gaussian
distribution as �D 7500 ms and the deviation as � D 1000 ms. The experimental results are shown
in Figure 5, in which the interval setting is same with that in Figure 4. In both cases of synchronous
and asynchronous samples, the errors among the sample values are very small when different per-
cent sensor nodes stop sampling data. Table I gives the average error in whole work lifetime under
both cases. We can easily find that the errors of luminous density are quite small.
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Table II. Energy saving (mW).

Period interval 15% 10% 5% 0%

Synchronous sample 50 83.037 89.996 92.963 98.897
100 38.013 40.748 42.056 44.504

Asynchronous sample 50 112.296 117.813 121.499 126.588
100 63.012 65.023 67.846 69.623

In Table II, we illustrate the energy consumption in our experiment. The energy consumption con-
tains two parts: communication and sampling. The transmission power of each node is �18 dBm.
From Table II, we can observe that energy consumption is higher when a network works under
higher confidence level. Thus, the LDA scheme in this paper can save energy. For example, 9%
energy is saved under synchronous sample when the confidence level is 10%, and period interval is
50.6.61% energy is saved under asynchronous sample when the confidence level is 10% and period
interval is 100.

6.3. In comparison with an existing method

We also set up an outdoor experiment on the same test-bed as shown in Figure 3 and compare our
scheme with the existing method DOG [28]. In this experiment, we measure luminous density from
6:00 PM to 5:00 AM. Sampling rate is set to be once per minute. The transmission power of each
node is �5 dBm because a network is deployed regularly and each pair of neighboring nodes is no
more than 1 m apart. When no strategy is used, all nodes participate in the measurement of luminous
density in every minute. The experimental result is illustrated in Figure 6.

When comparing our scheme with DOG [28], we set confidence level as 10% in LDA and k D 5
in DOG, where k is the number of nodes selected each time. DOG is a distributive algorithm for
node selection, in which k nodes are selected each time to measure some natural parameters. The
purpose in selecting k nodes is to minimize the expected mean squared prediction error (EMSPE),
which can converge to a stable small value after taking a large number of iterations to find a good set
of nodes. Two models, broadcast model and p2p, are considered in [28]. Under both models, DOG
has to cost much time on node selection and consume much energy on communication.

Figure 7 shows the percentage of nodes to participate in measurement. Although DOG needs
only five nodes to measure the natural parameter, luminous density, much more than this number
of nodes are involved because DOG has to select five from the actually involved nodes to mini-
mize EMSPE. The number of those involved nodes is quite affected by the variation of value of the
parameter the network is measuring. For example, the value of luminous density varies greatly from

Figure 6. Luminous density measured with no strategy.
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Figure 7. Percentage of active nodes.

Figure 8. Energy consumption per node in each minute.

time 170 to 250 and from 500 to 605 in Figure 7. Thus, the percentages of nodes to measure lumi-
nous density increase dramatically, even up to 100%, in these two periods by DOG. Comparatively,
the percentage keeps between 25% and 40% at most of time by our scheme LDA. As a result, DOG
consumes much more energy than that by LDA when the value of luminous density varies greatly
during those two periods as shown in Figure 8. It deserves to be specially noted that DOG consumes
more energy than that by no strategy from time 220 to 320 and from 550 to 650 in Figure 8. That is
because DOG spends much time and energy on node selection by broadcast or p2p, as we address
that communication is much more energy consuming than that caused by processing data.

However, DOG has its advantage on minimizing EMSPE. In the whole period from time 0 to 650,
the maximal error, compared with that by no strategy, obtained by DOG is not more than 5 and that
by LDA is not more than 10. Therefore, LDA consumes less energy, involves less number of nodes
than DOG, and achieves a little higher error bound. Actually, DOG is power and time consuming
whereas LDA can save energy.

7. CONCLUSION

This paper firstly studied the error between the value obtained from the sampled data of all or a part
of nodes, and its real one is bounded when assuming that there is no link unreliability. The relation
between the error bound and the number of sampling nodes or time slots was given out when the
confidence level was previously given. In order to minimize the number of sampling child nodes
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and time slots, we designed algorithms to assign confidence levels to child nodes of the root on the
basis of their corresponding confidence levels. We studied the case when link unreliability exists
and computed the probability bound when the confidence level and error bound are given. By our
LDA scheme, different amounts of energy could be saved whereas different confidence levels were
required. We also designed an algorithm to implement LDA under asynchronization. Our scheme
was implemented on real test-beds of TelosB nodes, and its results were compared with an existing
algorithm DOG. The experimental results illustrated that our scheme can save energy extremely.

There are some works waiting to be solved in the future. When the distribution of the sampled
data does not obey Gaussian distribution, we will estimate the probability density function in a com-
plex and time-variation environment. As the paper has analyzed the error bound under the certain
confidence level when the link unreliability probability Pl > 0, we will design the algorithm that
allocates the error bound and confidence level with the existence of the link unreliability probability.

We will analyze the error and confidence level allocation when the beginning time of each node
to sample data is asynchronous, as the clock offset in WSNs is unavoidable and relatively large [41]
and it costs much extra energy to synchronize time in the network.

ACKNOWLEDGEMENTS

This paper is supported by the National Natural Science Foundation of China under Grants No.61003298,
and No.60803126 and the sub-foundation of Zhejiang Provincial Key Innovation Team on Sensor Networks
under Grant No.2011R09046-07 and the Natural Science Foundation of Zhejiang Province under Grant
No.Z1080979.

REFERENCES

1. Estrin D. Wireless sensor network, part IV:sensor network protocols. In The ACM/IEEE 18th Annual International
Conference on Mobile Computing and Networking (MOBICOM, Westin Peachtree Plaza, Atlanta, Georgia, USA,
Sept. 23–28 2002; 23–28.

2. Krishnamachari L, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks. In IEEE The 22nd
International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2-5 July 2002; 575–578.

3. Wu Y, Li XY, Liu YH, Lou W. Energy-efficient wake-up scheduling for data collection and aggregation. IEEE
Transactions on Parallel and Distributed Systems 2010; 21(2):275–287.

4. Eskandari Z, Yaghmaee MH, Mohajerzadeh AH. Energy efficient spanning tree for data aggregation in wireless
sensor networks. In Proceedings of 17th International Conference on Computer Communications and Networks
(ICCCN), St.Thomas U.S. Virgin Islands, August 3–7 2008; 1–5. IEEE.

5. Wan PJ, Huang CH, Yao F. Nearly constant approximation for data aggregation scheduling in wireless sensor net-
works. In 26th Annual IEEE Conference on Computer Communications (INFOCOM), Anchorage, Alaska, USA,
May 6–12 2007; 366–372.

6. Yu B, Li J, Li Y. Distributed data aggregation scheduling in wireless sensor networks. In 28th Annual IEEE
Conference on Computer Communications (INFOCOM), Rio de janeiro, Brazil, 19th–25th April 2009; 2159–2167.

7. Gao J, Guibas L, Milosavljevic N, Hershberger J. Sparse data aggregation in sensor networks. In the 6th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN), Cambridge, Massachusettes,U.S.A,
April 25–27 2007; 430–439.

8. Li XY, Wang Y, Chen H, Chu X, Wu Y, Qi Y. Reliable and energy-efficient routing for static wireless ad hoc
networks with unreliable links. IEEE Transactions on Parallel and Distributed Systems 2008; 20(10):1408–1421.

9. Vutukuru M, Balakrishnan H, Jamieson K. Cross-layer wireless bit rate adaptation. ACM SIGCOMM Computer
Communication Review 2009; 39(4):3–14.

10. Guo S, Gu Y, Jiang B, He T. Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable
links. In The ACM/IEEE 15th Annual International Conference on Mobile Computing and Networking (MOBICOM)
2009; 133–144. ACM.

11. Chen J, Xu W, He S, Sun Y, Thulasiraman P, Shen X. Utility-based asynchronous flow control algorithm for wireless
sensor networks. IEEE Journal on Selected Areas in Communications 2010; 28(7):1116–1126.

12. Li X, Tang S, Frieder O. Multicast capacity for large scale wireless ad hoc networks. In The ACM Thirteenth
Annual International Conference on Mobile Computing and Networking (MOBICOM), Montréal, Québec, Canada,
September 9–14 2007; 266–277.

13. Dodge Y. The Oxford Dictionary of Statistical Terms. Oxford University Press: USA, 2006.
14. Zhang J, Shen X, Dai G, et al. Energy-efficient lossy data aggregation in wireless sensor networks. Ad hoc and Sensor

Wireless Networks 2011; 11(1–2):111–135.
15. Son D, Krishnamachari B, Heidemann J. Experimental study of concurrent transmission in wireless sensor networks.

In Proceeding of ACMthe 4th international conference on Embedded networked sensor systems (Sensys), Boulder,
Colorado, USA, November 1–3 2006; 237–250.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2012)
DOI: 10.1002/dac



J. ZHANG ET AL.

16. Xu XH, Wang SG, Mao XF, Tang SJ, Li XY. An improved approximation algorithm for data aggregation in multi-
hop wireless sensor networks. In Proceedings of the 2nd ACM international workshop on Foundations of wireless ad
hoc and sensor networking and computing, New Orleans, USA, May 18, 2009; 47–56.

17. Wang L, Wan Z-Y, Wan P-J, Huang C-H, Jia X. Minimum-latency aggregation scheduling in multihop wireless net-
works. In Proceeding of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), New
Orleans, Louisana, USA, May 18-21 2009; 185–194.

18. Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV. Prediction-based data aggregation in wireless sensor networks:
combining grey model and Kalman filter. Computer Communications 2011; 34(6):793–802.

19. Zhang J, Shen X, Tang S, Dai G. Energy efficient joint data aggregation and link scheduling in solar sensor networks.
ElSEVIER Computer Communications 2011; 34:2217–2226.

20. Hu Y, Yu N, Jia X. Energy efficient real-time data aggregation in wireless sensor networks. In the ACM interna-
tional conference on Wireless communications and mobile computing (IWCMC), Vancouver, Canada, July 3–6 2006;
803–808.

21. Yu Y, Krishnamachari B, Prasanna VK. Energy-latency tradeoffs for data gathering in wireless sensor networks. In
23th Annual IEEE Conference on Computer Communications (INFOCOM), volume 1, Hong Kong, China, March
7–11 2004; 244–255.

22. Li M, Wan PJ, Yao F. Tighter approximation bounds for minimum CDS in wireless ad hoc networks. Algorithms and
Computation 2009:699–709.

23. Ma Y, Guo Y, Ghanem M. RECA: referenced energy-based CDS algorithm in wireless sensor networks. WILEY
International Journal of Communication Systems 2010; 23(1):125–138.

24. Hartl G, Li B. Loss inference in wireless sensor networks based on data aggregation. In Proceedings of the ACM 3rd
international symposium on Information processing in sensor networks (IPSN), Berkeley, California, USA, April
26–27 2004; 396–404.

25. Lee H, Keshavarzian A. Towards energy-optimal and reliable data collection via collision-free scheduling in wireless
sensor networks. In Proceeding of IEEE The 27th Conference on Computer Communications (INFOCOM), Phoenix,
AZ, USA, April 13-18 2008; pages 2029–2037.

26. Tang X, Xu J. Extending network lifetime for precision-constrained data aggregation in wireless sensor networks. In
the IEEE 25th International Conference on Computer Communications (INFOCOM), Barcelona, Catalunya, Spain,
April 23–29 2006; pages 1–12.

27. Jindal A, Psounis K. A clustering method that uses lossy aggregation of data. In Proceedings of the ACM 2nd inter-
national conference on Embedded networked sensor systems (SenSys), Baltimore, MD, USA, November 3–5 2004;
269–270.

28. Golovin D, Faulkner M, Krause A. Online distributed sensor selection. In the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), Stockholm, Swenden, April 12–16 2010;
220–231.

29. Deshpande A, Guestrin C, Madden SR, Hellerstein JM, Hong W. Model-driven data acquisition in sensor networks.
In Proceedings of the Thirtieth international conference on Very large data bases-Volume (VLDB), Toronto, Ontario,
Canada, 2004; 588–599. VLDB Endowment.

30. Banerjee T, Chowdhury KR, Agrawal DP. Using polynomial regression for data representation in wireless sensor
networks. WILEY International Journal of Communication Systems 2007; 20(7):829–856.

31. Shi L, Cheng P, Chen J. Sensor data scheduling for optimal state estimation with communication energy constraint.
Elsevier. Automatica 2011; 47(8).

32. Penrose MD. The longest edge of the random minimal spanning tree. The Annals of Applied Probability may 1997;
7(2):340–361.

33. Wan P-J, Alzoubi KM, Frieder O. Distributed construction of connected dominating set in wireless ad hoc networks.
Mob. Netw. Appl. 2004; 9(2):141–149.

34. Kendall MG, Stuart A. Inference and relationship, (3rd edn), The Advanced Theory of Statistics, Vol. 2. Griffin:
London, 1973.

35. Klenke A. Probability Theory: A Comprehensive Course. Springer Verlag, 2008.
36. Ebeling C. An Introduction to Reliability and Maintainability Engineering. The McGraw-Hill Companies, 1997.
37. Subramaniam S, Kalogeraki V, Palpanas T. Distributed real-time detection and tracking of homogeneous regions in

sensor networks. In the IEEE 12th Real-Time and Embedded Technology and Applications Symposium (RTSS), San
Jose, California, USA, April 4–7 2006; 401–411.

38. Knuth D, Morris JH, Pratt Jr V. Fast pattern matching in strings. SIAM Journal on Computing 1977; 6(2):323C350.
39. Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E, et al. Tinyos:

An operating system for sensor networks. Springer Ambient Intelligence 2005; 35.
40. Maróti M, Kusy B, Simon G, Lédeczi Á. The flooding time synchronization protocol. In ACM the 2nd International

Conference on Embedded Networked Sensor Systems (SenSys, New York, NY, USA, 2004; 39–49.
41. Hamilton BR, Ma X, Zhao Q, Xu J. ACES: adaptive clock estimation and synchronization using Kalman filtering. In

The ACM/IEEE 24th Annual International Conference on Mobile Computing and Networking (MOBICOM), 2008;
152–162.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2012)
DOI: 10.1002/dac



ENERGY-EFFICIENT LOSSY DATA AGGREGATION IN SENSOR NETWORKS

AUTHORS’ BIOGRAPHIES

Jianhui Zhang received his PhD degree and BS degree from Zhejiang University and
Northwestern Polytechnical University, China in 2008 and 2000, respectively. He is an
assistant professor of computer science at the Hangzhou Dianzi University now. His
research interests include algorithm design and analysis, distributive systems, sensor
networks, and wireless networks. He is a member of IEEE.

Xingfa Shen received his PhD degree and BS degree from Zhejiang University, China in
2007 and 2000, respectively. He is now an associate professor of computer science at the
Hangzhou Dianzi University. His research interests include sensor networks and wireless
networks. He is a member of IEEE and ACM.

Hong Zeng received his BS degree from Hangzhou Dianzi University, China in 2004. He
is an assistant professor of computer science at the Hangzhou Dianzi University now. His
work focuses on embedded system design.

Guojun Dai is a professor at Hangzhou Dianzi University, and he received his PhD degree
and BS degree from Zhejiang University, China in 1998 and 1991, respectively. His work
is on embedded system design and application. He is a member of IEEE and ACM.

Cheng Bo is a PhD student at Illinois Institute of Technology, USA from 2011. He received
his BS degree from Hangzhou Dianzi University in 2011. His research interests include
embedded system design and sensor networks.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2012)
DOI: 10.1002/dac



J. ZHANG ET AL.

Fang Chen received his BS degree from Hangzhou Dianzi University in 2011 and works
in Huawei Science and Technology Limited Company.

Changping Lv is an associated professor in Hangzhou Dianzi University. His research
interests include embedded system design and energy management in wireless networks.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2012)
DOI: 10.1002/dac


